
 F1/10 YellowTails

Software Testing Plan

Version 1

Bowen Boyd
Hanyue Wang
Kyle Watson
Jordan Wright

Faculty Mentor:

Isaac Shaffer

Project Sponsor:
Truong X. Nghiem, Assistant Professor, SICCS, NAU

Trong-Doan Nguyen, PhD Student, SICCS, NAU

04/03/2020

Table of Contents

1. Introduction 2

2. Unit Testing 4

3. Integration Testing 6

4. Usability Testing 8

5. Conclusion 10

1

1. Introduction
F1/10 Yellowtails is a team that was formed with the goal of improving access to the F1/10
autonomous racing platform. The members of F1/10 Yellowtails are Bowen Boyd, Hanyue
Wang, Kyle Watson, and Jordan Wright. We are creating a new autonomous racing interface
system called RosConnect. The project is sponsored by Dr. Truong Nghiem and his graduate
research assistant Doan Nguyen. Dr. Nghiem is the Director of the Intelligent Control System
Lab, or ICONS lab, at Northern Arizona UniversityIntroduction. At the ICONS lab our clients
are creating new theories and algorithms for intelligent and high performance control systems.
This includes developing solutions for the transportation industry. Currently, our clients are
focused on improving algorithms for self driving cars.

Self-driving cars have the potential to be the future of the automobile industry. The ever-growing
need for greater road safety, reduced road congestion, and environmental stability means that
vehicle autonomy advancements are particularly vital for society. This new industry needs more
engineers to help extend outreach to the general population and solve the problems that are
holding it back. However, there are currently no high-school programs that provide autonomous
technology education to students, especially those with limited coding experience. This lack of
access to the emerging field of autonomous technology results in potential engineers who choose
other fields and under-educated leaders of tomorrow.

Dr. Nghiem and Doan Nguyen are creating a summer camp for high school students that focuses
on autonomous vehicles that lowers the barrier of entry to this technology. Through this new
learning opportunity, they hope to attract high school students interested in STEM and ultimately
recruit these high school students to study at Northern Arizona University. The F1/10
autonomous racing platform is an RC car that is one-tenth the size of a formula one race car. It is
powered by an Nvidia Jetson computer onboard the RC car and has sensors that are found in real
self driving cars. Our clients want high school students to receive hands-on experience with the
F1/10 RC cars to understand how autonomous cars work.

The problem and premise for the creation of this project, is that the F1/10 autonomous platform,
in its current state, is complicated to operate. The Nivida Jetson located on the vehicles runs the
Ubuntu Operating System. The Ubuntu OS is then used to run the Robotic Operating System
(ROS) which controls the car. Further complications include the command-line, ROS’s need to
source the workspace directory, ROS’s need to use the Catkin compiler to compile all C code,
and ROS packages. Additionally, ROS packages require two files to be correctly set with
dependencies and parameters. So, changing one setting may require changing multiple files in
different directories. Even further, if a user happens to overcome the previous barriers of

2

complications, there still exists the problem of shutting down the vehicle while it is running in
order to prevent accidents and damage.

To clearly convey the problems at hand, we present the following list of our three problems:

1. The system controlling an autonomous vehicle is overly complicated to operate.
2. Configuration prior to operation requires changing multiple files in different directories,

i.e., there exists a “disconnected configuration”.
3. There does not exist an emergency stopping mechanism to halt the operation of the

vehicle.

Dr. Truong Nghiem, Doan Nguyen, and F1/10 Yellowtails aim to alleviate the problems listed
above by constructing and implementing RosConnect, a Graphical User Interface (GUI) for
driving autonomous F1/10 vehicles. RosConnect gives autonomous technology experience to
students by providing an interactable configuration window. In this window, students will choose
from four options: perception, mapping, planning and racing strategy. These options determine
what variables are passed to a simulator for the car and eventually the car itself. Thus, the
options selected determine the car’s behavior and capabilities. Furthermore, this “smart”
configuration window prevents all incorrects sets of chosen configuration options, and any
options chosen before closing RosConnect will be saved and loaded on the next startup. Lastly,
RosConnect provides a logging window that communicates major processing steps which are
handled in the background, including but not limited to roscore startup, simulation startup, and
program termination.

To clearly outline how RosConnect solves each of our previously listed problems, we present the
following list of solutions:

1. Operating an autonomous vehicle is made simple through RosConnect’s intuitive design
that only requires the user to choose configuration settings by clicking buttons on the
GUI, and then clicking a “run car” button.

2. Once a user has chosen a set of configuration options, RosConnect automatically sources
and links the necessary packages to launch a vehicle operation, eliminating the need to
change files in different directories.

3. RosConnect contains an emergency “stop car” button that can be clicked by the user to
halt further vehicle operations.

With this intuitive interface design, RosConnect succinctly addresses each of our client’s
problems and ultimately gives access to autonomous racing to every high-school student,
irrespective of her or his coding competency.

3

2. Unit Testing
As our software is meant to simplify complicated systems it is important that our software works
as intended and does not add to the stress of working with the RC cars and autonomous robotic
concepts. To accomplish this goal we split our software into individual units that we can test to
determine if they do what they are supposed to do. No matter what input these units are given
they should handle it gracefully as to not crash the application or hang. For example, if given a
bad input the code should display an error message instead of crashing.

We will be using the PyTest library to streamline our testing and get more details. Due to the fact
that our software uses bash scripts to accomplish some task we have developed some test scripts
as we progressed to test these features.
We will be testing the following Units:

● Loading the Configuration
● Dependencies in the Configuration
● Saving and Loading Profiles
● GUI Output
● Simulation Startup
● Car Initialization
● Kill Switches

2.1 Loading the Configuration:
We worked with our clients closely to come up with a configuration system that populates the
GUI. This was important so that in the future our clients could change their curriculum without
having to recode anything. If the configuration is not a Yaml file or if the file is not formatted
properly our application should show a message stating such.

2.2 Dependencies in the Configuration:
The options that are selected are bound by dependencies that are established in the config file.
This means that our software does not allow now-working configurations as long as the config
file is correctly setup. When selecting options in the GUI options that can no longer be selected
due to conflicts of the depency tree are not selectable.

4

2.3 Saving and Loading Profiles:
The collection of options that are selected are called profiles. Our client wanted a way for the
students to quickly have one setup and switch to another one. It's important that these profiles are
connected to a corresponding configuration file as the options in the profile need to exist in the
loaded config. This is handled by a version number that both files contain and our software
checks for equivalency. If the number of the profile you are trying to load does not match the
version number of the loaded config the GUI prints a message to the console that the profile can
not be loaded due to non-matching version numbers. Saving a file is easy and its content is auto
generated by our software.

2.4 GUI Output:
When the car or simulator is started the GUI takes the current selected option and converts into a
specific string format that the Simulators and GUI need to run the corresponding configuration.
We test this with a script that gets the output string and allows us to test it against what it should
be.

2.5 Simulation Startup:
The output from the GUI determines what simulator is run. There are checks in place so a user
can not open more than one simulator as each instance is resource intensive. On close our
software makes sure to properly close all the background processes that the simulator opens.

2.6 Car Initialization:
When the car starts, it takes the input from the GUI and opens an SSH session that passes the
GUI string to a launch file. This launch file starts the Robotic Operating System including a
process that will stop the car if the SSH session is lost. The launch file on the car corresponds to
the config that is loaded into our software. The client opted for this method so that they can
change and adjust all packages they might use in their curriculum.

5

2.7 Kill Switches:
There are two kill switches to protect the user and expensive equipment that is on the car. The
first kill switch is located on the GUI and sends a kill command over the SSH connection. The
second kill switch is an emergency backup on the car that stops it if the SSH connection is lost.

3. Integration Testing
Integration testing is a mechanism that it used for checking that modules of a system interact as
expected. The goal of integration testing is to expose the existence of communication errors
between a system’s modules. For the purposes of integration testing on our product, RosConnect,
we focus on the communication between three of our major modules: Configuration, Options,
and Communication. We will be structuring our integration tests with a top-down approach. That
is, we will validate the functionality of module integration starting from the user-facing
elements. To perform integration testing we will use the pytest Python library as was determined
in our Technology Feasibility document.

3.1 Configuration File to Configuration Window
The configuration file is a YAML file that is constructed by our clients. The agreed upon format
of this file has the following structure,

 Category 1
 - choice 1

- Title
- Dependencies

 - choice 2
- Title
- Dependencies

 …
 - choice n

- Title
- Dependencies

 …
 Category N

 - choice 1

6

- Title
- Dependencies

 - choice 2
- Title
- Dependencies

 …
 - choice n

- Title
- Dependencies

Note that this structure is assumed for some reasonable value of n. The dependencies for each
choice within a category must be consistent. This means that we must check that the
dependencies graph for any given configuration file is in fact a tree, i.e. a non-cyclic, connected
graph. So, when a user loads RosConnect, a configuration file must be parsed and the graphical
user interface is then populated from this parsed information. After parsing this information from
the configuration file, we run a checking function that ensures the structure of the file is as
shown above and that the dependencies graph is consistent.

3.2 Options Chosen to Options Saved
After a configuration window has been populated in our graphical user interface, a user has the
ability to choose among the options (or choices) for each category as shown above. Given that
the user has chosen some set of options, the Options module must correctly read this user input
and save the input so that if the GUI is closed, then these options are reloaded upon starting
RosConnect again. We must ensure that these saved options correspond to available
configuration window options upon such a reload.

To do this we invoke a function call that checks the correspondence between these options, and
if a failure occurs, then we load the configuration window without the saved options showing.
Additionally, we will display a warning message to the user in the logging console.

3.3 Options Saved to Vehicle Communication
Once a user has selected a set of options from the configuration window, then the user might
either choose to start the simulation or run the vehicle. If the user chooses to run the vehicle, then
the Communication module must take input from the options saved and create a set of launch file
parameters to be sent to the vehicle. Each element from this set of parameters must correspond to

7

an option from the configuration window and the parameters must be correct in terms of the
dependency tree. Our system will take these options saved and create the parameter set by
validating the correctness in terms of the configuration window and dependency tree.

4. Usability Testing
The last form of testing of our product is usability. We are going to handle this by letting our
clients use the system to see if they can easily follow it. We are going to also have people that
don’t know what is going on with our project. The goal of usability testing is to gather
information from the user to help make the product better and ensure that we have met all of the
requirements that the clients need.

Testing to make sure that anyone is able to use our product is a major part of our projects since
we are making it easier for users instead of working with the command line. This product will be
used by multiple high school students so we have to design the user interface so high-school
students can have no problems using it. We need our product to be easy to use so the clients are
not having to spend time explaining how to use it in their summer camp and can focus on
teaching the students about autonomous racing.

When testing the users they will have to show that they are able to do the following tasks:

● Selecting Values
● Saving a Profile
● Loading a Profile
● Clicking Car
● Stopping the Car
● Running the Simulation
● Exiting the GUI after the user made selection but didn’t save it.

This is all of the major functionality all the kids in the camp are going to have to be able to
follow so we want to make sure it is clear on how to do everything so there is no confusion.
While having the students complete the tasks above we will not provide them with a whole lot
of direction to see how hard it may be to find certain aspects of the GUI. This will help us by
letting us know about how detailed we need to be in all of our documentations. If we need to be
more specific that is good to know so we can give step by step directions.

Some of these questions we will ask are:

● What did you find difficult to find and why.

8

● Was there any time that it seemed like we should have inputted more information to the
console so you know what is going on?

○ If so when?
● What gets printed to the console makes sense and is easy to read?

○ If not, what didn't make sense and was hard to read.
While conducting these tests we will have a developer watching and taking notes on what they
see to help us gain what we should change. This will give us more information if the user testing
it doesn’t feel comfortable telling us that they struggled with a part. At the end of the testing the
development team will have a short survey for the user to take to give honest feedback on what
they would like to see improved and what they would like to see get taken out if anything. We
will take these changes into consideration. While taking it into consideration we will be working
with what time we have left. If we do have time to implement it we will get that into the next
version of the product.

4.1 Testing
Since we are about five weeks from the semester being over we are going to have to act on the
testing fast to ensure that we have plenty of time to create new versions for students to try if
possible.

● Week of March 30th First round of testing:
○ In this testing we will have our clients to go through and try working all of our

functional requirements to see if we have everything that we have agreed to.
● Week of April 6th:

○ In this phase of testing we will have other students and even possibly high school
students test the system to see how easy they are able to interact with this product.

● Week of April 13th:
○ This is when we will show off the product with any changes we were suggested to

make by either the client or the testing of other students and possibly the high
school kids.

● Week of April 20th:
○ This is going to be reserved for final testing to ensure that we are going to get

exactly what students and our clients want to see in the product.

9

5. Conclusion
Autonomous vehicles are quickly emerging as the future of the automobile industry. However,
safety concerns involving this technology require further innovations from future generations.
Moreover, there are currently no high-school programs that provide autonomous technology
education to students, especially those with limited coding experience. This lack of access to
autonomous technology results in under-educated future autonomous innovators. That is why Dr.
Nghiem and Doan Nguyen are creating a summer camp for high school students that focuses on
racing autonomous vehicles.

The problem is that the F1/10 autonomous platform, in its current state, is complicated to
operate. This means that many students who lack the necessary coding experience are unable to
participate in our clients summer camp program. So, Dr. Nghiem, Doan Nguyen, and the F1/10
Yellowtails aim to make this platform more accessible and easier to use with RosConnect, a
Graphical User Interface (GUI) for driving autonomous F1/10 vehicles. With it’s intuitive
design, this new interface system gives access to autonomous racing to every high-school
student, irrespective of her or his coding competency.

This document has outlined the various tests for our project of our product. In unit testing, we
have explained in detail what method we will use for unit testing and we separated the whole
software project into seven units as we use bash scripts. For each unit we give a very clear
description for how to test it and the information it will display after the test.

Further discussion in this document involved integration testing and usability testing. For
integration testing, it is an activity based on unit testing to test whether each part of the software
unit meets or realizes the corresponding technical indicators and requirements in the process of
assembling all the software units into modules, subsystems or systems according to the
requirements of the general design specification. We focus on the communication between three
of our major modules: Configuration, Options, and Communication. And we will use the pytest
Python library to perform integration testing.

For the usability testing we are trying to let our clients use the system to test whether they are
easy for use. Because in this part we are not only testing its functionality, but we are also
gathering information from our users to help make the product better and to make sure that we
are meeting all the requirements that our customers need. And make the product more easy to
use as this product will be used by multiple high school students. We separated the usability into
seven tasks for users to test whether they are able to do or not. At the same time, we will also ask
them about their use experience to better improve our products.

10

Our current implementation progress includes a fully developed configuration module with all
necessary functionalities, a functional simulation module, and an established mechanism for
transmitting information from the Raspberry Pi to the Jetson Nvidia board on the vehicle. This is
to say, we are currently on track in meeting every projected design detail in building
RosConnect. Moreover, to establish assurances, we will thoroughly test all components for
proper functionality so that each component meets the criteria of its design. The idea that
autonomous vehicle technology will be available to high school students and that our team plays
a critical role in providing this unique opportunity is both gratifying and fascinating. We are
excited and eager to provide this highly interactive application that will give high school students
access to a truly intriguing and exhilarating experience with F1/10 autonomous racing!

11

